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Final Technical Report
Under the AFOSR Grant F49620-94-1-0035
(November 1, 1993 - October 31, 1997)

P.I.: Shaw-Hwa Lo

Institution: Columbia University, Box 20, Low Memorial Library, NY, NY 10027
Grant no: F49620-94-1-0035

Status of Effort: During the past year I have been continuously working on the areas
of Survival analysis, reliability theory, coverage problems, and the bootstrap method with
applications. Some of these efforts were published (96-97) or to be published in the near
future. See the publications list below. Currently I am working with my students on the
problem of “adapt Cox models to cased-control study in Survival analysis”. The method
if developped will have numerous applications in seeking risk factors in various fields.

Accomplishments / New findings:

Some of my recent findings, under the AFOSR grant F49620-94-1-0035, on the areas
of reliability and survival analysis are particularly encouraging. These results together
with their implications are briefly described as follows:

It is well-known that the Kaplan-Meier (K-M) estimator often behaves very unstable
and unreliable on the tail part of the survival function due to heavy censoring. The
distributional properties responsibile for these behaviors are largely unclear. Although
there have been some discussion along the line in recent literature (Gill (1983), Ying (1989),
and Stute and Wang (1993)), the general problems of to what extent the valid inference can
be drawn and what is the nature which dominates the convergence (or divergence) of the
tail estimator, are virtually unknown and unanswered. The answers to these questions will
not only add novel knowledge to the statistical literature, more importantly, they provide

guidelines and suggest applicable procedures to the daily users routinely, as we shall see
below.

Roughly speaking, our recent findings (some appeared in June, 1997 Ann. Stat.)
indicate that the tail behaviors of K-M curve are determined by a set of simple necessary
and sufficient conditions. There are two basic types of convergence involved here, the
STRONG law and WEAK law (in probability). Therefore there are two conditions which
determine K-M curve’s behavior, depending on strong or weak laws respectively. If we
denote by 7x the right limit of support of A = FG, where F and @ are usual survival
function of interest and censoring survival function, respectively, the K-M estimator can
be defined as

Bty =1- [] (- %=0),

0<s<t Ya(s)
where N, (s), and Y,,(s) are the usual counting processes based on complete data and risk
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size at remaining time s, respectively.

We outline major findings in the following RESULTS: The first result gives the nec-
essary and sufficient condition of rates convergence in strong law.

RESULT 1. (STRONG LAW)

Forany0<p< %, we conclude that

sup nP|F,(t) — F(t)l=0(1) a.s.

t<ty

if and only if
TH -
/ (1-G)5 dF < co. (1)
0

The second result extents Lo and Singh’s (1986) iid representations from finite interval to
whole real line. Note that the iid variables {¢} appeared in the following expression are
different from that in Lo and Singh (1986).

RESULT 2. (REPRESENTATIONS OF £, — F)
If (1) holds for some p,0 < p < 3, then

Fo(t) — F(t) = —75-9 Zf(Zi, 0ist) + Y (t)

where §(z‘i’ 6i7 t) = fl_IfS'?z§i)) - Ot fflll’ and
sup |yn(t)| = O(n—% \Y; n“%e)(logn)il') a.s.

t<ry

The following result tells us the rates of week convergence, which is of fundamental im-
portance in statistics.

RESULT 3 ( WEAK LAW)

Assuming that 0 < p < % Then

sup [n?(F,(t) — F(t)| = 0p(1) if and only if
t<ty

{i (1~ G)aF}-»

e < 0.

limt—)TH




Furthermore, we conclude that
sup |nP(F,(t) — F(t)| = op(1) ‘ if and only if
t<ry
{[[7(1-G)dF}i-» B
1-G(t) B

hmt-—)TH

A nature question arises: Does exact order of weak convergence exit? If it does, how to
find it?

The following result 4 and 5 answer the question afﬁrmatively; “

RESULT 4.

There ezists a unique p, 0 < p < -21- such that

lim lim P{0 < sup |nP(F,(t) — F(t)l<m}=1.

m-—+c0 n t<TH

This result also tells us that for that unique p, the following inequalities must hold:
TH
~o0 <l (og(1 ~ H() = (1~ p)log( | (1~ C)aF))
t

< T (o8(1 = H6) = (1~ p g | "1~ 6yar))
< 0.

Therefore, we can consider a nature estimator of p as follows:

RESULTS 5. (ESTIMATION OF p)

Consider a simple linear regression problem with observations {(log 4, log(Nn(Z(n-jy))},,
where {Z;)} are the ordered values of {Z;}. If we treat logj as the covariate and
10g(Nn(Z(n_j))) as the response variable in the linear model, then p can be estimated

consustently by p, where 1 — p is the slop estimator described by the above regression prob-
lem.

Although the proposed estiamtor p is consistent, the distributional properties of p is
not clear at the moment. Further study is needed toward this important direction.

Another question needs to be explored is that from Result 4 above, there exists a
unique p such that n? (£, (t) — F(t)) forms a tight sequences of processes on D[0, 7g]. The
distribution of this limiting process is not identified, however. One may use bootstrap to
approximate the limiting distribution in practice without knowing the theoretical distri-
bution, the trouble is that the current case is not regular and the well known bootstrap
theory cannot be applied.




The phenomenon discovered here, we believe, is both practically and theoretically
important. To our best knowledge, nothing of this kind has been reported in the statistical
literature. We also believe that the above phenomenon is not isolated. As a matter of fact,
we expect that similar phenomenon will also occur in other incomplete data problems.
Therefore we strongly believe that the techniques developed here can be employed to
explore further important unknown.

Progress on the area of ‘
THE CASE-CONTROL STUDY WITH FAILURE TIME DATA

In most case-control studies, it is necessary to define a specific population where the
cases and controls are randomly selected from the individuals who developed disease in
a specificed accession period or from the individuals who are disease-free by the end of
the case accession period, respectively. Our situation is slightly different, however. The
disease cases are randomly selected from a time-dependent population Py(10) consisting
of individuals who meet certain inclusion criteria set before the study and are known to
have developed disease before current calendar time T = To. For example, suppose we are
interested in a lung cancer study with risk variables X. The current calendar time is 1996
which is 7. The inclusion criteria may include: (1) individuals who reside at certain areas,
(2) he (or she) must be at least 20 years old but not exceed 80 by the present time To.
An individual who lived in the specified area, now 48 and developed lung cancer 6 years
ago (regardless dead or still alive) would be considered as a sample point in Pj(r). The
survival time T of interest for this individual is clearly 22 years (since 42-20=22). An

individual who was diagnosed lung cancer in 1962 at age of 53 is not included in P;(7p),
however.

Similarly, the controls sample are randomly selected from a time-dependent population
Fy(1o) consisting of those individuals who meet certain similar inclusion criteria and known
to be disease-free at 7. In the above example, an individual who is 35 years and is disease-
free contributes at least 15 years to the survival time T of interest. In other words, T is
right censored. In fact, every individual’s survival times T in Py(7q) is censored. This is
why the individual is qualified to serve as a control.

Note that some of the cases in P, (T0) may be censored (either left or right) for various
reasons. For a clear and simple illustration of our proposed method, we have chosen to
exclude this possibility that P;(ry) may have incomplete observations. But the method
proposed here does extend to cover these more complicated situations.

We shall assume that Py () consists of all units with complete survival time {Ty, Py (70)}
while Py(79) consists of all individuals with right censored survival times {Cy;7ePo(70)}
with Cy < T, for each yePy(rp). The method considered here assumes that a suitable
time-dependent population {Pi(7), Po(7); T = calendar time} can be defined. Some indi-
viduals may fall in P, (7) initially and subsequently develop the disease and become part
of Py(7') for 7' > 7. For each individual with risk variables X (t) (this 7 corresponds to



survival time which is different from t), the disease incidence rate is defined as, according
to Cox proportional hazards models, :

MT =t|X(8)) = Mo(t) exp{X ()87}

From now on we shall restrict our discussion on the case that risk variables are inde-
pendent of time ¢. We shall return and comment on this general case later. It is plausible
to estimate 8 but not Ag(t) based on the case-control data. Suppose that n cases and m
controls are }andomly selected from P;(7y) and P (7o) respectively. Let Z =1 if someone

is included in the sample, Z = 0, otherwise. (Note that the random indicator variable Z
defined here may depends on 7).

Suppose that n cases and m controls are randomly selected from P;(r) and Py(7o)
seperately. Let Z = 1 if someone is included in the sample, Z = 0 otherwise. (Note that Z
may depend on 75 and X, but given the disease status (i.e.; either in Pj(rp) or Py(1), 2
is independent of X at 7 = 7, however).

The full likelihood based on the observed data can be written as

n m
Lik = [ £(Ti = t:, XITs < C) [[ PT; > ¢, C; = C;, X,1T; > )

i=1 J=1
= L1 X Ly, say

L, can be further written as
n
Li=[[f(Ti=t.X,2: = 1,Ts < Cy),
i=1
since given T' < C, T and X are independent of Z.
We then arrive at

n
L, = Hf(Tz =t|Z; =1,T; < Ci)P(XiiTz‘ =t,2;=1,T; < C;)

=1
P(XiIZi = 1)
PT;<CijZ:i=1)

n
= Hf(Ti =t;, 1 < Ci|X;,Z; = 1)
=1

It is clear from the sampling plan, P(T < Clz=1)= i Likewise, L, can be written
as

P(ZJ‘ = ll)..(j)
P(T; < GjlZ; = 1)’

m
Ly=[[P(T>¢;,T;>C; = CjlX;,Z =1)
j=1

and P(T > C|Z = 1) = =™, We attempt to maximize Ly x La, subject to the following

X n4m'’
constraints n

n-+m

=) PT<CIX=2,Z=1)P(X=2|Z=1)
{z}




m
n+m

=Y PT>ClX=2,2=1)P(X=3|Z=1),
{z} )

the summation runs over all possible exposure values, and will be replaced by integral
if X is continuous. An argument similar to Anderson (1972) and Prentice and Pyke
(1979) shows that this constrained maximum likelihood estimate (MLE) is the same as the
unconstrained MLE which maximizes

‘n m
Hf(T, =%;,T; < Ci‘).,(i,Zi = I)HP(T] > Cj,Cj =leX]-,Zj = 1) =LI X L;, say.
i=1 . j=1 S

Now L7 is proportional to L{* = [[, f(T} = t;,T; < Ci|X;) and L3 is proportional
to L3* = H;’;l P(T; > ¢;,C; = cj|X;). This says that if the prospective Coz model
were applied to the case-control data, as if the sampling were prospective, the likelihood
Junction would be proportional to the prospective likelihood. Therefore one can estimate the
parameters B ezactly the same as the ordinary propspective partial likelihood method. The
major difference is, the base line hazard Junction Ao(t) and corresponding cumulative hazard
A(t) = fot Ao(u)du are no longer estimable, as evidenced by C.2 and the fact that “although
Li* x L3* is proportional to L} x L3, as demonstrated above, the constant factor (ratio)
between the two products depends on the quantities such as P(Z = 1|T =t,T < C, X) and
P(Z =1|T > ¢,T > ¢, X) which are not estimable under the case-control design”. These

two quantities here involve the knowledge of the size of P, (70) and Py(7p), which is generally .

non-existent based on a case-control design, unless additional sources of information are
available.

FURTHER WORK. The distributional properties of the estimator 3 derived above
is important. We proposed to explore this fully in the near future. The issues of how to
extend our method to accommodate more general case-control studies which involve contin-
uous risk variables and time-dependent exposure are certainly interesting and important.
With minor modifications of our method we feel we do can handle the time-dependent
cases without much difficulties. To cover the general cases involving arbitrary continuous
covariates will, however, require smoothing techniques and special treatment, and these
deserved further study. We plan to include these problems in our future study.

So far we have discussed our method under the simplest design for case-control data.
We believe we can do various extensions: Various degrees of matching or stratification can
be built into the design and case-control sampling fractions can be allowed to vary among
marked sets or stratus. The later issues is particular relevant to the problem raised earlier:

what if we collect another case-control data 5 years from now? Can we combine these two

data sets collected in distinct calendar times to conduct a coherent analysis? The answer
to this question is “yes” under the simple design described above. Although the sampling
probabilities may vary, depending on distinct calendar times and the corresponding time-
dependent populations {P;(7)} and {Po(7)}, the likelihood function can still be derived
and shown to be proportional to the likelihood function derived from a prospective study. It
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is not clear to us, however, whether this desirable property still holds in more complicated
designs which involve matching and stratifications. This together with various practical
variations of the problems constitute a further area of our future study. Furthermore, to

test our method, we plan to apply our method to various existing data collected from
earlier cancer studies. ‘
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